Finden Sie schnell plasma beschichtung für Ihr Unternehmen: 99 Ergebnisse

Beschichten (Plasma)

Beschichten (Plasma)

Aufbringen einer Schicht durch Niederschlag eines zuvor verdampften Materials auf ein Werkstück unter Plasmaeinwirkung.
Pulverbeschichtung

Pulverbeschichtung

Pulverbeschichtung auf Aluminium und Metallen
Pulverbeschichtung

Pulverbeschichtung

Mit der SCHOCK Pulverbeschichtung realisieren wir leistungsfähige und optisch ansprechende Produktoberflächen mit Langzeit-Korrosionsschutz und individueller Farbgestaltung. Die elektrostatische Pulverbeschichtung basiert darauf, dass sich Teile mit entgegengesetzter elektrischer Ladung anziehen. Bei hohen Anforderungen wie Schlagfestigkeit und Wetterresistenz ist eine Pulverbeschichtung unverzichtbar. Diese Eigenschaften bewirkten, dass Branchen wie Gerätebau, Maschinenbau, Medizintechnik, Heizungs- und Lüftungstechnik, Haushaltsgeräte-, Laden- und Möbelbau zu einem großen Teil von Nasslack auf Pulverbeschichtung umgestellt haben. Für das Verfahren der Pulverbeschichtung eignen sich alle elektrisch leitenden und thermisch stabilen Festkörper. Die Schock Pulverbeschichtung arbeitet mit modernster Technik, mit schnellen Farbwechselzyklen und nachhaltiger, energieeffizienter Produktion. Unsere Beschichtungsanlage steht am zentralen Logistik-Hub der Schock Group in DE-72296 Schopfloch. Dies garantiert unseren Kunden eine pünktliche, zuverlässige und wirtschaftliche Belieferung. Lacktyp: glatt oder Struktur Bauteilgröße: bis 1300 x 600 x 600 mm Mindestlosgröße: 5.000 Stück
Pulverbeschichtung

Pulverbeschichtung

Bei der Pulverbeschichtung handelt es sich um ein Beschichtungsverfahren, bei dem ein elektrisch leitfähiges Bauteil mit Pulverlack beschichtet wird. Das Pulver wird elektrostatisch oder tribostatisch aufgeladen, auf den zu beschichteten Untergrund aufgesprüht und anschließend bei ca. 200° Grad eingebrannt. Die Einbrennzeit richtet sich nach der Materialstärke. Oberflächen und Glanz
Oberflächenbeschichtung

Oberflächenbeschichtung

Langjährige Partnerschaften mit führenden Unternehmen der Oberflächenvergütung Durch langjährige Partnerschaften mit führenden Unternehmen der Oberflächenvergütung bieten wir u. a. Oberflächenbeschichtungen wie Pulverbeschichten, Nasslackierung, Verzinken, Verchromen und KTL-Beschichten. Sehr Kurzfristig können wir Serien-, Einzel- und Sonderteile in den verschiedensten Qualitäten und Anforderungen liefern. Selbstverständlich sind auch galvanische Oberflächenbeschichtungen oder Phosphatierungen möglich. Über unser Know How hinaus bieten wir Ihnen Manpower und Logistik, wenn Sie Zusatz und Sonderarbeiten vor oder nach der Beschichtung benötigen.
Vakuumbeschichtung

Vakuumbeschichtung

Die Beschichtungen zeichnen sich durch folgende Merkmale aus:- Dicken von einigen Nanometern bis zu mehreren Mikrometern- Härten von 1000 bis 4000 HV.
PULVERBESCHICHTUNG

PULVERBESCHICHTUNG

Für den Standort Aue: Elektronische Pulverbeschichtung: Durchlaufanlage für Serienbeschichtungen auf aktuellstem Stand der Technik mit eingehaustem Beschichtungsprozess für Top-Oberflächen, um Fremdeinwirkungen zu vermeiden. Die Pulverbeschichtung findet bei uns in einem Sauberraum via Kreisförderanlage auf circa 2.000qm statt. Für den Standort Metzingen: Schon seit den frühen 90er Jahren arbeiten wir mit vollautomatischen 6-Achsen-Robotern und gelten als Pionier in der Roboter-Lohnbeschichtung. Vor allem ein flexibles Mehranlagensystem ermöglicht den Kunden eine absolut zuverlässige Just-In-Time-Belieferung. Elektronische Pulverbeschichtung: Manuell im Mehranlagensystem mit 6-Achsen-Roboter für gleichbleibende Oberflächenqualität. Wirbelsintern – Isolierbeschichtung für Kleinteile (z.B. Schalter und Klemmen); Isolierbeschichtungen bis 3.000 Mikrometer; Artikel mit aufwendigen beschichtungsfreien Stellen.
Pulverbeschichtung

Pulverbeschichtung

Mit unseren Produkten können Sie glänzen! Pulverbeschichtung ist die optimale Lackierform für Metallteile und schafft durch die Oberflächenversiegelung Langlebigkeit für Ihr Produkt – das spart bares Geld. Es entstehen sehr strapazierfähige, extrem stoß- und kratzfeste Oberflächen, die den ständigen Austausch einzelner Verschleißteile reduzieren oder sogar komplett einsparen. Durch die lösemittelfreie Art des Lackes ist diese Vorgehensweise außerordentlich umweltfreundlich. Unser perfektionierter Ablauf besteht aus Reinigung, Beschichtung und dem Einbrennvorgang. In unserer leistungsstarken Pulverbeschichtungsanlage verwenden wir ausschließlich hochwertige Pulverlacke namhafter Hersteller und beschichten auch komplexe Bauteile auf höchstem Qualitätsniveau. Wir bieten ein breites Farbspektrum an Pulverlacken an. Zusätzlich haben Sie die Wahl zwischen verschiedensten Oberflächen wie matt, glänzend oder strukturiert - schließlich kommt es aufs Detail an. Gerne unterstützen wir Sie bei der treffenden Wahl von Farbe und Struktur.
Pulverbeschichtung

Pulverbeschichtung

Bei der Beschichtung legen wir großen Wert auf einen effektiven Korrosionsschutz und eine gleichmäßige Schichtbildung.
Pulverbeschichtung

Pulverbeschichtung

Pulverbeschichtung - Durch moderne Anlagentechnik bieten wir Ihnen die größtmögliche Sicherheit und prozesssichere Beschichtungen. Als OEM Oberflächenspezialist sind wir ein erfahrener und langjähriger Lieferant für Pulveroberflächen oder Duplexbeschichtungen. Wir liefern seit fast 20 Jahren sehr große Stückzahlen in die Automobilindustrie. Die Kunden von HB-SCM Oberflächentechnik fertigen Originalteile für sämtliche namhaften Premium-Automobilhersteller wie zum Beispiel AUDI, BMW, Mercedes-Benz, Porsche, Volkswagen u.v.a.. Wir sind spezialisiert im Einzelteil-, Klein-, Mittel- und Großserienbereich für die Automobilindustrie, Möbelindustrie, Lebensmittelindustrie (lebensmittelechte Pulverbeschichtung), Juweliere (Hautverträglichkeit), Elektronikindustrie (ableitfähige ESD-Beschichtung), Lüftungstechnik u.v.m.. Durch moderne Anlagentechnik bieten wir Ihnen die größtmögliche Sicherheit und prozesssichere Beschichtungen. Wir liefern Farbtöne nach RAL, NCS oder Sikkens, bis hin zu Farben, die exklusiv für Kunden ausgearbeitet werden. Top Korrosionswerte durch vorgewählte Vorbeschichtungen, Galvanik oder KTL Salzsprühtests nach DIN 50021 über 1000 Std auf Rotrost. Teilegrößen bis 3 m Länge und 2 m Höhe. Erweiterung geplant!
Lohnbeschichtung

Lohnbeschichtung

Die APC ist spezialisiert auf die Vor- und Kleinserienbeschichtung von Objekten aller Art (Metalle, Kunststoffe, Gläser, Keramiken). Bei der Beschichtung kommt das Verfahren der Plasma-unterstützten Gasphasenabscheidung (PECVD) zu Anwendung. Plasma-Beschichtungen Die APC ist spezialisiert auf die Vor- und Kleinserienbeschichtung von Objekten aller Art (Metalle, Kunststoffe, Gläser, Keramiken). Bei der Beschichtung kommt das Verfahren der Plasma-unterstützten Gasphasenabscheidung (PECVD) zu Anwendung. Im Portfolio sind verschiedenste Beschichtungen der Stoffgruppen Plasmapolymere, SiOx und Diamant-ähnlicher Kohlenstoff (DLC). Beschichtungsprozesse Je nach Anwendung stehen folgende Beschichtungsprozesse zur Verfügung, die alle im Vakuum ablaufen: Prozess Anwendung Aquacer Schichten mit guter Benetzung Carbocer Sehr harte Schichten mit dauerhaft geringem Reibungsbeiwert Clearprotect Transparente, harte, chemisch beständige Schichten Decocer Dekorative Schichten Lipocer Wasser- und ölabweisende Beschichtungen
Laserhärten

Laserhärten

Laserhärten ist ein effizientes und äußerst flexibles Verfahren für das gezielte und präzise Härten von metallischen Bauteilen. BLS bietet als Experte für die Lasermaterialbearbeitung ein sehr detailliertes und umfassendes Fachwissen mit dieser Lasertechnologie. Was ist Laserhärten? Laserhärten – auch unter Laserstrahlhärten bekannt – nutzt die Vorteile eines Lasers für das Härten eines metallischen Bauteils. Der Laser erwärmt definierte Stellen des Metallteils um durch eine Gefügeumwandlung die Festigkeit des Werkstoffs an dieser Stelle zu steigern. Die behandelte Werkstoffschicht erfährt durch die Wärmebehandlung eine Austenitisierung, wodurch sich das Material mit einer ferritisch-perlitischen Struktur in hartes Martensit verändert. Die metallurgischen Eigenschaften bleiben bestehen. Während des Prozesses wird die behandelte Werkstoffschicht per Laser fast bis zur Schmelztemperatur (ca. 900 – 1400 °C) erwärmt. Wenn der Laser sich weiterbewegt, sorgt das umgebende Material für eine direkte Kühlung der erhitzten Werkstoffschicht. Die Wärme wird in das Bauteilinnere abgeleitet und es erfolgt eine Selbstabschreckung. Das Resultat ist eine harte Oberfläche, die mechanisch und chemisch stark beansprucht werden kann. Die erreichbare Härte ist abhängig vom Werkstoff, es wird üblicherweise das Maximum der für den Werkstoff möglichen Härte erzielt. Laserhärten ist ein Verfahren, dass zu den Randschicht-Härteverfahren gehört. Eine Randschicht wird sehr kurz und gezielt gehärtet. Laserhärten wird daher sehr häufig verwendet, um bei Bauteilen gezielt Verschleiß, Verformungen oder Abnutzung vorzubeugen. Die Präzision des CNC-gesteuerten Lasers fokussiert die Wärmeeinbringung äußerst genau auf bestimmte, stark beanspruchte Funktionsflächen. Zusammen mit der hohen Geschwindigkeit des Verfahrens minimiert dies Verzug und Nacharbeit. Das Laserhärten der Werkstoffe eines Bauteils ist möglich, solange die metallischen Werkstoffe einen signifikanten Kohlenstoffanteil haben (mindestens 0,2 %, gängig ist 0,3-0,4%). Dies ist nötig, da die Austenitisierung zum Härten nur stattfinden kann, wenn Kohlenstoffatome in der Metallgitterstruktur ihre Position verändern können.
Plasmaschneiden

Plasmaschneiden

Als Alternative zum Laserschneiden kommt hier eine Technik aus dem Plasmaschneiden zum Einsatz, das Wirbelstromverfahren. Hierbei sind Winkelabweichungen nur noch im geringen Maßen erkennbar. Was den Qualitätsvergleich mit einem Laserzuschnitt sehr nahe kommt, in der Regel aber kostengünstiger ist. Außerdem können auch hochlegierte Stähle, Aluminium und Bundmetalle verarbeitet werden.
Kaltaktives Plasma

Kaltaktives Plasma

Auf unseren Systemen kann konventionelle als auch kaltaktive Plasmabehandlung zum Einsatz kommen. Besonders die kaltaktive Plasma-technologie behandelt ihre Teile schonend bei Temperaturen bis max. 70°C. Gerne beraten wir Sie.
Plasmaschneiden

Plasmaschneiden

Genauigkeit und Schnittgeschwindigkeit Das Plasmaschneiden benötigt eine zielgerichtete Kombination aus Plasmagas und Sekundärgas. Im Gegensatz zum autogenen Brennschneiden ist das Verfahren in erster Linie ein Schmelzprozess. Der Lichtbogen und das Plasmagas werden durch eine wassergekühlte Kupferdüse eingeschnürt. Hierdurch wird das Gas bis zur Dossoziation und teilweise bis zur Ionisation erhitzt, so dass eine heiße Plasmaflamme entsteht, welche Temperaturen bis 30.000 Grad Kelvin aufweist. Das Grundmaterial wird in der Schnittfuge augenblicklich geschmolzen und durch das Plasmagas aus der entstehenden Fuge geblasen. Es sind dabei hohe Schnittqualitäten erreichbar. Mit dem Plasmaschneideverfahren lassen sich im Gegensatz zum autogenen Brennschneiden alle elektrisch leitenden Werkstoffe trennen. Wirtschaftliches Plasmaschneiden für metallische Werkstoffe Wir schneiden verschiedenste Werkstoffe Wir verwenden das Plasmaschneideverfahren zur Bearbeitung von Blechen aus Stahl, Edelstahl und hochlegierten Stählen in einem Arbeitsbereich von 3.000 x 6.000 mm. Auf unseren CNC gesteuerten Anlagen lassen sich hohe Schnittgeschwindigkeiten und Präzision bei sehr moderaten Betriebskosten erzielen.
Plasma-Brennzuschnitte

Plasma-Brennzuschnitte

Plasma-Brennzuschnitte sind ein fortschrittliches Schneidverfahren, das in verschiedenen Industriebereichen eingesetzt wird. Diese Technologie ermöglicht präzise und effiziente Schnitte durch das Verwenden eines ionisierten Gasplasmas. Beim Plasma-Brennzuschnitt wird ein elektrischer Lichtbogen zwischen der Elektrode des Schneidgeräts und dem zu schneidenden Material erzeugt. Durch den Lichtbogen wird das Gas, typischerweise Luft oder ein spezielles Plasma-Gasgemisch, stark erhitzt und ionisiert. Das ionisierte Gas wird dann mit hoher Geschwindigkeit aus einer Düse ausgestoßen, wodurch ein konzentrierter und intensiver Plasmastrahl entsteht. Der Plasmastrahl kann Temperaturen von mehreren tausend Grad Celsius erreichen, was es ermöglicht, Metalle und andere leitfähige Materialien effektiv zu schneiden. Der hochenergetische Plasmastrahl schmilzt das Material an der Schnittstelle und entfernt es gleichzeitig durch die kinetische Energie des Gasstrahls. Dadurch entsteht ein präziser und glatter Schnitt mit minimalen Wärmeeinflüssen auf das umgebende Material. Die Vorteile des Plasma-Brennzuschnitts liegen in seiner Geschwindigkeit, Präzision und Vielseitigkeit. Es kann sowohl dünne als auch dicke Materialien schneiden und eignet sich für verschiedene Metalle wie Stahl, Edelstahl, Aluminium und Kupfer. Die Schnittgeschwindigkeit ist im Vergleich zu anderen Schneidverfahren recht hoch, was die Produktivität erhöht. Zudem ermöglicht die präzise Steuerung des Plasmastrahls komplexe Schnittmuster und Formen. Plasma-Brennzuschnitte finden Anwendung in verschiedenen Industrien wie dem Maschinenbau, der Metallverarbeitung, dem Schiffbau, der Automobilindustrie und vielen anderen. Sie werden für die Herstellung von Bauteilen, Blechen, Rohren, Profilen und anderen Werkstücken verwendet. Die Technologie hat dazu beigetragen, die Effizienz und Qualität des Schneidprozesses zu verbessern und ermöglicht präzise und wiederholbare Ergebnisse. Es ist wichtig zu beachten, dass der Plasma-Brennzuschnitt spezielle Ausrüstung und Fachkenntnisse erfordert, um sicher und effektiv durchgeführt zu werden. Die Auswahl des geeigneten Gases, der richtigen Stromstärke und anderer Parameter ist entscheidend, um optimale Ergebnisse zu erzielen. Daher wird empfohlen, erfahrene Fachleute oder spezialisierte Dienstleister für Plasma-Brennzuschnitte zu konsultieren, um die bestmöglichen Ergebnisse zu erzielen.
Plasmaschneiden

Plasmaschneiden

Plasmaschneiden nutzt einen Plasmastrahl, um Metalle zu schmelzen und von der Schnittfuge zu entfernen, auch für solche, die sonst nicht thermisch schneidbar sind. Dieses Verfahren ist durch hohe Geschwindigkeiten besonders effizient und wird in zwei Hauptarten unterschieden: Direktes Plasmaschneiden, wo der Lichtbogen direkt zwischen Elektrode und Werkstück stattfindet, und indirektes Schneiden, das den Lichtbogen zwischen Elektrode und einer Hilfsanode verwendet. Im Vergleich zum Laserschneiden, das präziser aber begrenzt in der Materialdicke ist, bietet Plasmaschneiden eine kostengünstige Alternative mit hoher Wirtschaftlichkeit und geringeren Anschaffungs- sowie Unterhaltskosten.
Beschichtung von Kunststoffen

Beschichtung von Kunststoffen

Wir haben uns zu einem führenden Anbieter in den verschiedensten Verfahren zur Oberflächenbeschichtung von transparenten Kunststoffen spezialisiert. Die abriebfesten und transparenten Beschichtungen unter Reinraumbedingungen sind ein Schwerpunkt unserer Fertigungsverfahren. Thermisch aushärtende Lacksysteme Beim Flutverfahren wird ein sehr dünner Film auf die Platten aufgetragen - "geflutet". Hierdurch entsteht ein Spüleffekt, eventuell letzte vorhandene Staubpartikel werden damit entfernt. Wir können sowohl Plattenware beschichten, wie auch fertig verformte Teile. Zu Ihrer Materialbeistellung beraten wir Sie gerne. Wir verwenden alle gängigen kratzfesten Lacksysteme, wie z.B PHC587, AS4000, AS4700 aber auch neuere Lacke wie XH100, MP100. Die eingesetzten Kunststoffe sind in der Regel PMMA und PC. Durch diese Beschichtungen erhalten die meistens transparenten Platten eine höhere Abriebfestigkeit, einen zusätzlichen Schutz vor UV-Strahlen, sowie eine höhere Chemikalienresistenz oder auch Anti-Fog Eigenschaft. Nicht nur im Bereich Maschinenbau und Automotive, sondern auch in der Medizintechnik bieten diese Beschichtungen deutliche Verbesserungen. UV-aushärtende Lacksysteme Der Lackauftrag geschieht entweder im Flutverfahren oder wird bei kleineren Teilen mittels einer Lackieranlage im Sprühverfahren vorgenommen. Die Bauteile durchlaufen nach dem Lackauftrag einen Wärmekanal und anschliessend kommt die entsprechende UV-Einheit. Durch Automatisierung und absolute Sauberkeit werden hier Bauteile in höchster Qualität schnell und günstig beschichtet. Unser Extra zur normalen UV-Beschichtung: Beidseitige Aushärtung durch gegenüberliegende UV-Einheiten kann ein Inertgas wie z.B. Stickstoff eingeleitet werden. Mit diesem Verfahren können die Lackeigenschaften nochmals zusätzlich verstärkt werden. Jahrelange Erfahrung im Umgang mit diesem Verfahren zeichnet die Kirsch Kunststofftechnik aus.
Hartmetallbeschichtungtechnik

Hartmetallbeschichtungtechnik

DieHartmetallbeschichtungtechnik, die auch als Elektroimpuls-Schweißplattierung (EISP) bezeichnet wird, basiert auf dem Effekt der Elektroerosion. In Folge einer elektrischen Entladung zwischen der Elektrode und dem Werkstück werden Hartmetallmoleküle aus der Elektrode herausgelöst und in die thermisch beaufschlagte Oberfläche implaniert. Dadurch entsteht eine Schicht aus wolframreichen Mischkristallen und intermetallischen Hartphasen, die zähe Mehrstoff-Kristallstrukturen aufweisen. Die Verbindung der Hartstoffpartikel mit dem Grundwerkstoff ist derart intensiv, dass ein unlösbarer Verbundwerkstoff in der Randzone entsteht - mit Schichtdicke von 0,001 bis 0,040 mm. Das Besondere an dieser Technik: Bauteile können partiell, eng begrenzt und ohne Verzug beschichtet werden. Dies stellt eine technologische Optimierungen gegenüber anderen modernen Beschichtungssystemen, wie Flammspritzen oder CVD- und PVD-Beschichtungen, dar.
Plasma-Nitrieren

Plasma-Nitrieren

Die Nitrierhärtung im Vakuum mittels Ionenbeschuss im Plasma einer modifizierten Gasentladung, ist ein Verfahren zur Oberflächenbehandlung von Werkstücken aus z.B. Eisen, Stahl, Guss. In einer Retorte wird zwischen Werkstückoberfläche und Retortenwand eine Gleichspannung angelegt, wobei die Werkstücke vorwiegend als Kathode, die Retortenwand als Anode geschaltet sind. Der Atmosphärendruck wird evakuiert und bei einem konstanten Unterdruckbereich in einem reaktionsfähigen Behandlungsgas die Gasentladung durch Anlegen einer Basisspannung eingeleitet.
Laserhärten

Laserhärten

Weniger Nacharbeit und die Möglichkeit auch unregelmäßige, dreidimensionale Werkstücke zu bearbeiten sind die Vorteile des Laserhärtens. Dank der geringen Wärmeeinbringung bleibt der Verzug gering und der Aufwand für Nacharbeiten verringert sich oder entfällt ganz. Das Laserhärten macht Bauteile belastbarer. Es erhöht die Härte und Widerstandsfähigkeit der Oberfläche nur an den Bereichen des Werkstücks, an denen diese Eigenschaften gewünscht sind. Das partielle Laserhärten von Funktionsflächen gewinnt eine zunehmende Rolle bei der Bauteilkonzeption und stellt eine sinnvolle und kostengünstige Variante dar. Durch den Einsatz unseres Festkörperlasers können Funktionsflächen an komplexen Bauteilen effizient und nachbearbeitungsfrei gehärtet werden. Um das Werkstück zu härten, erwärmt der Laserstrahl die Randschicht meist bis knapp unter die Schmelztemperatur, auf etwa 900 bis 1400 Grad Celsius. Sobald die Soll-Temperatur erreicht ist, bewegt sich der Laserstrahl und erwärmt dabei die Oberfläche in Vorschubrichtung kontinuierlich. Durch die hohe Temperatur verändern die Kohlenstoffatome im Metallgitter ihre Position (Austenitisierung). Sobald der Laserstrahl sich weiterbewegt, kühlt das umgebende Material die heiße Schicht sehr schnell ab. Man spricht dabei von der Selbstabschreckung. Durch das schnelle Abkühlen kann sich das Metallgitter nicht in die Ausgangsform zurückbilden und Martensit entsteht. Martensit ist ein sehr hartes Metallgefüge. Die Umwandlung in Martensit führt zu einer Härtesteigerung. Laserhärten zählt zu den Randschichthärteverfahren. Es wird ausschließlich bei Eisenwerkstoffen angewendet, die sich härten lassen. Das sind Stähle und Gusseisen mit Kohlenstoffanteilen über 0,3 Prozent. Prinzip des Laserhärtens: Der Laserstrahl erhitzt die Randschicht des Metalls. Schnelles Abkühlen härtet sie auf.
Plasmaschneiden

Plasmaschneiden

Drei hocheffiziente Plasmaschneidanlagen, davon eine neue Zinser / Kjellberg Feinplasma Anlage sorgen für kurze Durchlaufzeiten und geringe Kosten. Effiziente Schnittoptimierungen, dank moderner Verschachtelungs-Software bedeuten einen geringen Verschnittanteil. Davon profitieren Sie in Form von günstigeren Materialkosten. Sie erhalten bei Heinz Edelstahl Zuschnitte aus 10- bis 40-mm Blechen (fast) in Laserqualität - gefertigt auf unserer neuen Feinplasma-Schneidanlage. Mit dieser Anlage können exaktere Brennzuschnitte angefertigt werden, die keine bzw. nur eine geringe Nachbearbeitung erfordern. 
HVOF Beschichten

HVOF Beschichten

Wolfram-Karbid-Beschichtungen im HVOF Verfahren aufgetragen. Robotergesteuert. Roboter 5D; Rundtisch; Mehrfachspannvorrichtung; High Velocity Oxygen Fuel; Keramik Beschichtung für Verschleißschutz; Schichtdicken 30 µm; Haftzugwert 70 mPa; Microhärte 1250 HV
Plasmabehandlung

Plasmabehandlung

Innovative Plasmabehandlung für zukunftsweisende Oberflächenmodifikation Die Di Coste GmbH bietet fortschrittliche Plasmabehandlung für vielfältige Anwendungen in der Oberflächenmodifikation. Mit modernster Technologie und jahrzehntelanger Erfahrung entwickeln wir maßgeschneiderte Lösungen für unsere Kunden. Unsere hochentwickelten Plasmasysteme ermöglichen eine präzise und effektive Behandlung Ihrer Oberflächen, was die Hafteigenschaften von Beschichtungen und Lacken erheblich verbessert. Zudem ist die Plasmabehandlung eine umweltfreundliche Alternative zu chemischen Verfahren und reduziert den Einsatz von Lösungsmitteln, wodurch sie besonders nachhaltig ist. Unsere Dienstleistungen sind darauf ausgerichtet, Prozesse zu optimieren, Zeit und Kosten zu sparen sowie die Produktqualität zu steigern. Die Plasmabehandlung erhöht die Haltbarkeit, Festigkeit und Funktionalität Ihrer Produkte. Wir bieten individuelle Lösungen, die exakt auf Ihre Anforderungen zugeschnitten sind.
Plasmazuschnitte

Plasmazuschnitte

Beim Brennschneiden von Stahl mit einer CNC-Brennschneidmaschine können wir für Sie wirtschaftlich Zuschnitte wie Rechtecke, Ringe, Ronden u.a. nach Ihren Wünschen herstellen. Dabei können wir mit der Plasma Brennschneidtechnik bei einer Blechdicke von 3-45 mm arbeiten. Der Vorteil von Plasmazuschnitten gegenüber dem Laser ist die Wirtschaftlichkeit. Die Schnittgeschwindigkeiten sind bei den dickeren Blechstärken ähnlich bzw. gleich schnell wie beim Laser. Die Maschine ist jedoch im Invest und in der Wartung deutlich günstiger und hat damit einen günstigeren Stundensatz. Außerdem sind Plasma-Brennschneidmaschinen bei gleicher Investitionshöhe meist deutlich größer und können somit größere Bauteile herstellen. Plasmazuschnitte haben jedoch qualitativ dem Laser einen kleinen Nachteil. Sehr kleine Löcher und Innenausschnitte sind nicht ganz so hochpräzise wie bei einem Laserschnitt und können einen Schrägschnitt aufweisen. Gegenüber dem Schneidverfahren Autogen setzt sich die Plasma bei kleinen Blechdicken deutlich auf Grund der schnellen Schnittgeschwindigkeiten durch. Damit ist die Maschine wesentlich wirtschaftlicher als eine langsame Autogen-Brennschneidmaschine. Die Autogentechnik kann hier nur punkten wenn man auf Grund der Bauteilgeometrie mehrere Brenner einsetzen kann. Somit kann man bsp. 6 Teile gleichzeitig schneiden während auf der Plasma-Maschine nur 1 Teil produziert wird. Bei Großsserien und Massenteilen ist dies sehr wirtschaftlich und kann dann günstiger sein. Die Nachteile sind jedoch, dass beim Autogenschneiden sehr große Wärmeeinbringung stattfindet. Damit werden die Kanten hart und die Teile oftmals uneben oder wellig. Blechdicken: 3-45 mm max. Breite: 4.000 mm max. Schneidlänge: 24.000 mm
Plasmanitrieren

Plasmanitrieren

Das Plasmanitrieren ist ein thermochemisches Verfahren, bei dem Stickstoffionen in eine metallische Oberfläche eingelagert werden. Durch den Einsatz von Plasma wird eine harte, verschleißfeste Schicht gebildet, die die Lebensdauer von Bauteilen erhöht. Das Verfahren ermöglicht eine präzise Steuerung der Nitrierschichttiefe und -härte.
Plasmaschneiden

Plasmaschneiden

Plasmaschneiden ist eins der wirtschaftlichsten Trennverfahren und sowohl Privatleute als auch gewerbliche Kunden können dies bei uns beauftragen. Das Plasmaschneiden eignet sich für Sie vor allem dann, wenn Sie auf einen besonders glatten und sauberen Schnitt angewiesen sind. Dabei ist nicht nur die Verarbeitung von Stahl möglich, sondern auch die von jedem anderen Metall.
Plasmaschneiden

Plasmaschneiden

leistungsstarkes und vielfältiges Schneidverfahren einsetzbar bei allen Metallen schmale Wärmeeinflusszone hohe Schneidgeschwindigkeit Trennung von elektrisch leitenden Werkstoffen
Mechanische Bearbeitung

Mechanische Bearbeitung

CNC FRÄSEN Prototypenfertigung Einzelteilfertigung Klein- und Mittelserienfertigung Arbeitsbereich: X-Achse 1260 mm / Y-Achse: 560 mm / Z-Achse: 500 mm CNC DREHEN Klein- und Mittelserien C-Achse + angetriebene Werkzeuge Haupt- und Gegenspindel
Brennzuschnitte

Brennzuschnitte

Spezialist für Plasmazuschnitte bis 25mm Dicke, Autogenzuschnitte bis 200mm Dicke, sowie Träger- und Profilebearbeitung. Ob Fräßarbeiten auf eigenen Chiron-Bearbeitungszentren, Sandstrahlarbeiten oder Baugruppenfertigung durch angeschlossenen Schweißfachbetrieb ist BW-Brennschneidtechnik GmbH & Co. KG für Sie da. Auch Bohren, Kanten, Stanzen, Richten, Nahtvorbereitung gehören zum Geschäft. Kurze Lieferzeiten. Auslieferung durch eigenen Fuhrpark.